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ABSTRACT

This paper introduces a learning-to-rank (LTR) framework to address the problem of
pipeline selection in automated machine learning systems. The traditional approach
to AutoML involves learning to predict the performance of various pipelines on a
given task based on data acquired from previous tasks (i.e., meta-learning), which
can be complex due to the need for different models for each task-specific metric.
The proposed framework aims to select the best pipeline based on ranking rather
than estimating a target metric, aligning more closely with the ultimate goal of
the task (i.e., selecting pipeline candidates in order, from more to least promising).
This approach enables more robust, metric-agnostic solutions that are easier to
compare using ranking metrics like NDCG and MRR. The paper evaluates LTR
strategies on public OpenML datasets, demonstrating a clear advantage for ranking-
based methods. Additionally, the integration of LTR with Bayesian optimization
and Monte Carlo tree search is explored, leading to improvements in the ranking
metrics. Finally, the study found a strong correlation between ranking metrics (e.g.,
NDCG and MRR) and AutoML metrics, such as the task objective metric and the
time to find the best solution, providing insights into how ranking-based methods
could enhance AutoML systems.

1 INTRODUCTION

Machine learning (ML) has become an essential component of countless scientific and industrial
endeavors, ranging from healthcare (Waring et al.,2020) to e-commerce (Micu et al., 2019). However,
applying machine learning in the real world is far from straightforward, as it involves multiple
steps such as data preparation (preprocessing), feature and model selection, hyperparameter tuning,
performance evaluation, etc. (Barbudo et al., 2023 Vazquez, |2022). The complexity in the design
of machine-learning solutions led to the development of automated Machine Learning (AutoML)
techniques that seek to relieve ML practitioners from repetitive and time-consuming tasks that have a
large impact on the final performance of ML systems (Karmaker et al., 2021).

While AutoML helped widen the adoption of machine learning solutions at scale by simplifying
the process of finding optimal configurations, it faces significant challenges. One such challenge
is efficiently leveraging past experiences to improve performance on new tasks. This problem led
to the development of meta-learning algorithms and techniques (Vanschoren, 2019) to capture the
knowledge gained from solving a variety of tasks to help find optimal solutions for novel (future) ones.
Meta-learning algorithms rely on meta-models to predict the performance of a given configuration
(pipeline) on a specific dataset. This prediction serves as an approximation of the actual performance
that the model would demonstrate if it were trained with the specified data. The benefit of this
approach is that it prevents from actually training the model on the data in question, saving time
and costs. Note that predicting pipeline performance involves predicting specific metrics for the
different types of ML tasks (classification, regression, etc.), often requiring different models for each
task-specific metric being optimized (Karmaker et al., [2021]).

We can recognize two broad strategies in the design of an AutoML system. One is to build an optimal
machine learning solution from a pool of simpler components (Ren et al.,|2021)), and the other is to
select it from a set of predefined options or configurations (Yang et al., 2020). When the problem
is about choosing among given solutions, it can be viewed as a ranking or recommendation task,
where the goal is to rank the set of possible configurations according to their effectiveness in solving
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the task. However, in many cases, the efforts of AutoML systems are focused on predicting the
performance of configurations rather than tackling the selection or decision-making problem directly.
For instance, when Bayesian optimization is used (Hutter et al.,[2011), the selection of configurations
often involves choosing the next most promising configuration based on a surrogate model. This
model is designed to capture the relationship between the configuration and the target metric, to
inform the selection process about which configuration to evaluate next. We argue that the selection
problem could be addressed more effectively by framing it as a decision-making problem, thereby
facilitating a more direct approach to determining the most valuable solutions.

Previous works explored different approaches to navigate the complex combinatorial space of
available options (models, preprocessing steps, hyperparameters, etc.) in AutoML. Drawing parallels
to finance portfolio management, some methods (Fusi et al.l 2018}, [Yang et al., |2019) optimize
model and pipeline selection based on historical performance, akin to optimizing a collection of
assets. Other methods (Feurer et al., [2022} |[Laadan et al, 20195 [2020), directly adopt ranking and
meta-learning strategies, demonstrating improvements in the efficiency of the AutoML workflow
through data-driven decision-making and the pre-ranking of machine learning pipelines. However,
although these approaches emphasize the importance of classifying information to speed up the
search process and improve the efficiency of the AutoML system, they do not consider the underlying
ranking problem explicitly.

This paper addresses some of these challenges by introducing a simple strategy for incorporating
learning to rank (LTR) (Liu et al.,2009) into the pipeline selection problem in AutoML. Here, the
aim is to learn to select the best candidate rather than estimating the target metric, which we believe
is closer to the ultimate goal of the pipeline selection task. This approach allows us to generate
more robust solutions that are agnostic to the target metric and easier to compare. Through the use
of ranking metrics such as NDCG and MRR, we explore the effectiveness of different approaches,
both score- and ranking-based. We also explore the use of LTR in classical sequential optimization
techniques, such as Bayesian optimization and Monte Carlo tree search. The approaches are compared
using public datasets from OpenML showing clear improvements for the ranking-based approaches.

The contributions of the paper are:

* The introduction of learning to rank (LTR) into the AutoML pipeline selection problem,
aiming to more accurately reflect the ultimate goal of selecting the best candidate pipeline.
This approach produces solutions that are robust and agnostic to the target metric, thereby
simplifying comparisons.

 Evaluation of the effectiveness of different AutoML approaches using ranking metrics such
as NDCG and MRR. This includes exploring the relationship between the ranking metrics
and typical AutoML metrics, such as the improvement in the objective metric and the time
it takes to find the best solution.

* Demonstrated improvements of ranking-based approaches over score-based ones through
empirical evidence gathered from experiments on public datasets from OpenML. This
underscores the efficiency and improved decision-making provided by adopting a ranking
perspective in the AutoML workflow.

The rest of the paper is structured as follows. Section 2 introduces the learning to rank framework
applied to AutoML, outlining some key concepts. Section 3 details the experimental setup, including
the design and objectives of our study. Section 4 discusses the results of our experiments, providing
insights into the performance of the LTR framework in the context of AutoML. Section 5 revisits
related work. Section 6 discusses the findings and limitations of the approach. Finally, Section 7
concludes the paper and suggests avenues for future research.

2 LEARNING TO RANK FOR AUTOMATED MACHINE LEARNING

Learning to rank is an important concept in the field of machine learning that involves training
models able to predict the relative order of a set of items. This technique is commonly used in search,
recommendation systems, and other cases where prioritizing items based on their relevance is critical
(Liu et al.,2009; | Xia,2019; [Karatzoglou et al.,[2013). This can be exploited in the context of AutoML
through the concept of meta-learning (Vanschoren, 2019).
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To prevent AutoML systems from repeatedly tackling similar tasks starting from scratch each time,
meta-learning methods leverage data acquired from previous experience (meta-learning data) to
improve performance on novel tasks (represented with meta-features). In our case, this corresponds
to optimizing the procedure by which we select optimal pipelines for a wide variety of problems. We
propose to do so by using ranking information instead of task-specific performance scores. In this
way, the process of pipeline selection becomes independent of the absolute scores observed in the
meta-learning data as well as from the different performance values achieved on each task.

In what follows, we first characterize the different approaches into score-based and ranking-based.
While the former appears as the most common approach in AutoML, the latter provides a less
explored and attractive alternative that will later prove to be effective.

2.1 SCORE-BASED MODELS

Score-based models represent most traditional approaches in the AutoML frameworks. These models
aim to predict the target metric of a problem, such as classification accuracy or mean regression
error. The predicted score is then used to select the most promising configuration or pipeline. This
aligns with the pointwise approach in LTR theory, where the input space consists of individual
configurations, and the output space is the score of these configurations on the target task.

This can be formalized as follows. Let C = {C1,C5,...,C,} represent the set of all possible
configurations or pipelines in the AutoML search space. The goal is to predict the performance
score of each configuration C; for a new given dataset D. To do so, we rely on a (parametric) score
prediction model f : C x D — R that takes a candidate configuration C; and dataset D as inputs and
predicts a score f(C;, D) that relates to the predictive performance of C; on D. The score predicted
by f is specific to each task (accuracy, F1-score, regression errors, etc.). We assume we know the
true value of this score for each pipeline-dataset combination in the meta-training dataset. We denote
the ground-truth scores as s(C;, D). Training the meta-model is based on regression towards this
metric by optimizing a suitable loss, such as the mean squared error of the scores, using a training
dataset (e.g. mean squeare error of the scores) consisting of triplets of the form {(C;, D;, s;;) }, with
C; eC, Dj € D, and Sij = S(CZ, DJ)

2.2 RANKING-BASED MODELS

Ranking-based models focus on directly learning the ranking order of different configurations. These
models are trained using explicit ranking information. The two primary formulations in this category
are the pairwise and listwise approaches.

In the pairwise approach, the input space consists of pairs of configurations, P = {(C;, C;)|C;, C; €
C}, where C represents the set of all available pipeline configurations. In this case, we rely on a
preference function g : P x D — {0, 1} that given a pair of candidate configurations (C;, C;) and
a dataset D, it predicts which one is better: g((C;,C;), D) = +1 if C; is better than C;, and 0
otherwise. The formulation could be extended to include a third category in which both configurations
are deemed equally good. The binary case, however, has the advantage that it can be easily tackled as a
binary classification problem. The model is trained using configuration pairs along with their relative
ground-truth performances. For a new given dataset D’, configurations are ranked by comparing
pairs and aggregating these pairwise preferences to form a global ranking. Common loss functions
for the pairwise approach include hinge loss (Cao et al.l 2006) or logistic loss (Burges et al., 2005)),
which explicitly account for a correct ordering of the pairs.

In the listwise approach, on the other hand, the input space corresponds to permutations of the set of
all configurations C. Instead of directly working with the set of all permutations of C, we can think
of a ranking function % : C x D — RICl that takes as input the set of available configurations and a
dataset D, and outputs a vector of scores of dimensionality |C|, whose i-th entry corresponds to the
relevance of configuration C; for solving the problem. Sorting the elements of this vector provides
the permutation indices that rank the elements of C according to their relevance for D. Training such
a model involves using the entire set of configurations C and their rankings for different datasets. The
model learns to predict these rankings as accurately as possible. There are two types of output spaces
used in the listwise approach. In the first, for a new dataset D’, the model predicts a ranking position
for each configuration. The configurations are then ranked based on these positions (Taylor et al.,
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2008)). In the second, the output space contains the ranked list (or permutation) of the configurations
(Cao et al.;,[2007). In this work, we will focus on the first one. By transforming the input and output
spaces from a score into ranking positions, we have a simple way to compare pipeline selection
approaches with and without ranking information. Finally, different losses can be used to train a
ranking model listwise (Cao et al.,[2007; Yue et al., 2007} Taylor et al.,|2008), all of which extend the
ranking formalism to account for a large set of candidate objects.

2.3 INTEGRATING LTR INTO SEQUENTIAL OPTIMIZATION FRAMEWORKS

LTR approaches described so far require evaluating the whole set of configurations during inference.
With large configuration spaces, this might result in excessive computations and time. Sequential
model-based optimization (SMBO) stands as an alternative formulation that seeks to improve the
efficiency of searching for optimal configurations in complex spaces. SMBO approaches rely on
discovering new configurations by using an estimate of the target metric as a comparison reference.
In the Bayesian optimization (BO) approach proposed by Hutter et al. (2011), a surrogate model is
trained to estimate the value of the target metric for a given configuration. In this way, configuration
pipelines are sampled through the use of an acquisition function, which guides the search for the
optimal solution by quantifying the expected utility of selecting a particular configuration. The
configuration that exhibits the highest estimated value according to this function is then selected.

In our work, we consider the selection problem as a ranking process that we can directly integrate into
the model. For instance, if our surrogate model is a regression of the accuracy for a classification task,
we can replace it with a regression that estimates the ranking position of the configuration. It is also
possible to use a pairwise model that, from a sample of configurations, orders them by comparing
pairs and selects the best one. By replacing the surrogate model with a pre-trained ranking model we
expect to improve overall performance. We call this variant of the BO algorithm BO-Rank.

Similarly, we can also reformulate model-free approaches such as Monte Carlo Tree Search (MCTS)
Vazquez et al.|(2022). In MCTS, the search space is encoded as a tree whose leaves encode the set of
possible configurations. Configurations are compared using a selection policy, which is computed
based on the target metric for the task, often referred to as the reward. In this case, we can replace
the objective function with a ranking objective, i.e. by using the ranking position as the reward from
which the selection policy is computed. This allows us to precompute the partial ranks for each
configuration and thus avoid the need to compute estimates of the target metric on a validation set as
in the traditional MCTS. We call this variant of the algorithm MCTS-Rank.

Finally, we also note that our approach could also be applied in the case of model-based MCTS by
using a ranking model as a surrogate during the simulation step. However, for the sake of simplicity,
we leave this to be explored in future works.

3 EXPERIMENTAL SETUP

Our evaluation encompassed a comprehensive comparison of four categories of selection approaches:

1. Random Selection: A baseline approach involving the random selection of pipelines,
serving as a control to gauge the effectiveness of more sophisticated methods.

2. Average Best: This approach involves selecting the best pipeline by ranking them based on
their performance in the training data.

3. Regression: This category uses regression to predict the performance metric, treating the
problem as the prediction of a score |[Hutter et al.| (201 1)); [Feurer et al.| (2015), or to predict
the rank of pipelines in a list, treating the problem as the prediction of a position.

4. Sequential Optimization: We consider the problem of Sequential Model-Based Optimiza-
tion (SMBO) using classical optimization frameworks, Bayesian Optimization (BO) and
Monte Carlo Tree Search (MCTS).

Each category was analyzed in two flavors: score-based and ranking-based (except for the Random
Selection baseline). In the case of Average Best (Avg), one version creates a list of the best pipelines
ordered by average score, while the other orders them by average rank. For the regression-based
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approaches, regressors from scikit-learn and LightGBM (LGBM) were used with default hyperparam-
eters to avoid bias from hyperparameter tuning. The regressors utilized were LinearRegression (LR),
Lasso, Ridge, RandomForestRegressor (RF), GradientBoostingRegressor (GB), and LGBMRegressor
(LGBM).

Additionally, for the SMBO frameworks, BO and MCTS were employed. These frameworks were
selected for their efficacy in navigating large search spaces, providing a robust platform to evaluate
the comparative performance of the proposed ranking methodologies. This experiment allows us to
evaluate and compare the effectiveness of different approaches in the context of continuous pipeline
selection within traditional frameworks, offering insights into the potential of these methods to
enhance and optimize existing techniques.

For BO, we consider a straightforward setting in which we initialize the process with a pre-trained
(meta-learned) surrogate model. Specifically, we first train a linear regression model on training tasks,
where it learns to either estimate the score of the pipelines (score-based regression) or their ranking
position (ranking-based regression). In each iteration, we take a pipelines sample (10 for AMLB and
100 for OpenML-Weka) and employ a greedy approach to select the best next pipeline to evaluate as
the acquisition function. After evaluating a pipeline, the surrogate model is retrained with the new
information, and the pipeline is removed from the pool of possible options. The algorithm runs until
there are no more pipelines available. The ordered list of selected pipelines is considered the final
ranking of pipelines to evaluate.

Similarly, for MCTS, we use the model-free variant; that is, no surrogate model is used. Instead, we
consider, in one case, a pre-calculated (meta-learned) average score of the pipelines as the reward
function, and in the other case, the average ranking position. In each iteration of MCTS, we use a
greedy approach for the rollout policy and the Upper Confidence Bound (UCB) for the selection
policy (with C' = %) to discover the next pipeline to evaluate. After evaluating a pipeline, it is

pruned from the pool of possible options. The algorithm runs until there are no more pipelines
available. The ordered list of selected pipelines is considered the ranking of pipelines to evaluate.

We conducted experiments on three different scenarios originating from a set of datasets extracted
from the OpenML initiative (Vanschoren et al.,[2014). For our experiments, a scenario is formed by:
a set of tasks, a set of features that describe the tasks, a set of models evaluated on those tasks, and
finally, an objective metric. Table[I|describes the scenarios. The first one was taken from the ASLib
initiative [Bischl et al.| (2016)), specifically, the OPENML-WEKA-2017 scenario. This set consists of
105 classification tasks solved by 30 models. OPENML-WEKA-2017 includes features describing
datasets and the predictive accuracy reported for evaluating models on tasks.

N° | Dataset #Tasks | #Models | Objective Metric
1 | ASLib - OPENML-WEKA-2017 105 30 Predictive Accuracy
2 | AMLB Classification 2023 71 2160 Balanced Accuracy
3 | AMLB Regression 2023 33 1485 Negative RMSE

Table 1: Summary of the scenarios evaluated.

The second and third scenarios consist of tasks from the Automated Machine Learning Benchmark
(AMLB) (Gijsbers et al.,[2022)), an open and extensible benchmark that follows best practices. This
set of OpenML tasks includes 104 tasks, split between 71 classification and 33 regression problems,
ensuring a broad representation of common challenges in machine learning. The complete list of
OpenML task IDs can be found in Appendix [A] With these tasks, we created two different scenarios
consisting of either classification or regression tasks.

To collect pipeline performances for the AMLB scenarios, we executed 2160 different pipelines for
classification and 1485 for regression. For the purpose of this experiment, we executed all pipelines in
a search space defined by a simple grammar (Appendix [C)) as in[Vazquez et al.| (2022). The execution
was carried out on an Amazon EC2 RS spot instance (8§ vCPUs and 64GB of RAM), and results were
saved, with the sole restriction that each pipeline must be completed within one minute. Each pipeline
was then identified by a randomly assigned ID. We used standard train-test splits, as provided by each
OpenML task. For classification and regression problems, balanced accuracy and root mean square
error (RMSE) were used as metrics, respectively.
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To describe the datasets, we computed the set of meta-features proposed by [Rivolli et al.| (2022)
with the Python Meta-Feature Extractor (Alcobaga et al, 2020)7] These meta-features encode
different characteristics useful for representing machine learning datasets. We applied PCA to
reduce the dimensionality of such representations to three dimensions. We found that this value
preserves most of the discriminative power of the original representation while considerably reducing
the number of dimensions. Additionally, we considered an additional meta-feature to capture the
average performance of each configuration. This additional meta-feature corresponds to the average
performance score for score-based models and the average rank for ranking-based ones. The average
is computed on the training dataset.

For learning to rank (i.e., meta-learning), we used task-level cross-validation with 10 folds. Addi-
tionally, we ran experiments with 10 different seeds. For evaluation, we considered two classical
ranking metrics: Normalized Discounted Cumulative Gain (NDCG) and Mean Reciprocal Rank
(MRR). NDCG measures the quality of the ranking system in terms of the position of the top-K
elements in a ranked list, with a diminishing value for elements further down the list. In contrast,
MRR considers the position of the highest-ranked pipeline, computed as the inverse of the position of
the best configuration.

In addition, we measured important AutoML system metrics across the multiple tasks: the average
score (SCORE) representing the mean value of the objective metric (such as accuracy or RMSE);
the time to find the best solution (TTB) measuring how long it takes for the system to identify the
best-performing pipeline within the predefined search space; and the average rank (AVG RANK)
reflecting the ranking of each approach performance relative to others (score- vs ranking-based)
where a lower rank indicates better performance (e.g., the best-performing framework on a task is
assigned a rank of 1, the second-best a rank of 2, etc.).

4 RESULTS
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Figure 1: Boxplots of variants (Rank-based in blue and Score-based in orange) performance (x-axis)
across tasks for each predictor (y-axis) after scaling the performance values from the mean (0) to best
value observed.
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Figure|[I]shows the performance distribution for the different system variants (Rank- and Score-based)
across multiple tasks, with the performance values scaled from the mean to the best value observed.
The predictors include various machine learning models such as MCTS, BO, LGBM, GB, RF, Ridge,
Lasso, and LR, as well as the Avg best strategy and baseline Random selection on different datasets
or scenarios (e.g., OpenML-Weka, AMLB Classification, AMLB Regression).

The inclusion of the random selection baselines shows that although both score- and ranking-based
variants perform generally better, overall performance depends to a greater extent on the type of
predictor. For most predictors, the Rank-based variants (blue) tend to exhibit a more consistent
and narrower distribution compared to the Score-based variants (orange), indicating more reliable
performance across tasks. This suggests that the Rank-based variant might be more robust when
applied to different tasks. In addition to its lower variability, the Rank-based variant can achieve
higher performances. This difference is particularly noticeable in the AMLB Regression dataset,
while in the other datasets, the difference is more subtle.

Specific predictors, such as Light Gradient Boosting Machine (LGBM) and Random Forest (RF),
exhibit tighter and more favorable performance distributions for both variants, suggesting these
models are robust across different tasks. However, simpler models like LR and Avg show narrower
performance ranges in Score-based variants. This advantage tends to disappear when the target is
transformed to a Rank-based variant. This could indicate that predicting scores is more susceptible to
overfitting, while predicting ranking positions is more robust.This is clearly visible in the AMLB
Regression, although it can also be seen in OpenML-Weka.

Table 2: Comparison of different approaches evaluated across three datasets: OpenML-Weka (D1),
AMLB Classification (D2), and AMLB Regression (D3). Each metric is assessed at three positions
(“a”, “b”, and ““c”), measuring performance in terms of NDCG, MRR, SCORE, RANK, and TTB.
For the AMLB datasets, the positions are 1, 10, and 100, while for the OpenML-Weka dataset, the
positions are 1, 5, and 10. Cell color indicates where the Rank-based approach improves over the
Score-based approach (green " > 0, dark green M > 10%, and blue M > 50% of improvements),
decreases (yellow <0, orange " < 10%, and red ! < 50% of improvements), or shows no changes

[T3L]

(grey ). The symbols “<” and “«” indicate statistical significance and “~" indicates not evaluated.

NDCG@ MRR@ SCORE@ RANK@ TBB@

Dl

D2

D3
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Table 2| presents a detailed comparison of different approaches evaluated across the three datasets:
OpenML-Weka (D1), AMLB Classification (D2), and AMLB Regression (D3). The performance
of these approaches is measured using five metrics (i.e., NDCG, MRR, SCORE, RANK, and TTB)
across three cutoff points specific to each dataset (1, 5, and 10 for OpenML-Weka, and 1, 10, and
100 for the AMLB datasets). The table also uses color coding to indicate where the Rank-based
approach improves over the Score-based approach. The symbols “<” and “«” indicate statistical
significance using the Wilcoxon signed-rank test (p-value < 0.05) and after Bonferroni adjustment
(p-value < 0.005), respectively. The missing entries ("-") for D1 are due to the dataset’s lack of
temporal information, which makes it impossible to calculate TTB, and its absence of information
about the components that form the pipelines, preventing the execution of MCTS, as MCTS requires
knowledge of pipeline components to structure exploration as a decision tree.

Across all metrics and datasets, the green/blue cells indicate areas where the Rank-based approach
outperforms the Score-based approach. These improvements are consistently observed across multiple
predictors, suggesting that the enhancements introduced are robust across different metrics and
datasets. For NDCG at all positions, significant improvements are observed across most predictors.

In terms of the SCORE, MRR, and RANK metrics, significant improvements are also observed,
particularly at lower positions (e.g., SCORE@a, MRR@a, and RANK @a). For TTB, however, the
improvement appears to increase as the number of positions considered increases. This indicates that
the evaluated methods are time-effective while maintaining performance even as the cutoff position
increases.

Yellow cells indicate metrics where a decrease in performance was observed. Interestingly, these are
relatively sparse, highlighting that the evaluated approaches generally lead to better performance
across most metrics. This decrease is less than 10%; only MRR in RF on the AMLB Classification
dataset shows a decrease in performance exceeding 10%, and none exceed 50%. In particular,
in the AMLB Classification dataset, there are a majority of instances where metrics do not show
improvement at certain positions, with SCORE@b and RANK @b being the most frequently observed.
However, it should be noted that in some cases, there is statistical significance indicating that the
paired results are generally better, even though the average performance is lower.

@ 9 T3]

The presence of statistical significance symbols (“<” and “«’’) across many of the metrics highlights
that the observed improvements are not just by chance but are statistically significant. This is particu-
larly evident in datasets D1 and D3, where the majority of improvements across different datasets
and positions are statistically significant. The stronger significance (denoted by “«”) after Bonferroni
adjustment further emphasizes the robustness of the findings, indicating that the improvements
are consistent and reliable across multiple tests (i.e., across different seeds). A summary of all

experiments corrected using the Bonferroni method can be found in Appendix [B.3]
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Figure 2: Spearman correlation between metrics at first position.

Figure 2] illustrates the correlation between different performance metrics at the first position across
three datasets: AMLB Classification, AMLB Regression, and OpenML-WEKA. The metrics eval-
uated include NDCG@1, MRR@1, SCORE@1, TTB@1, and RANK@1. The correlation values,
which range from -1 to 1, indicate the strength and direction of the linear relationships between these
metrics.



Under review as a conference paper at ICLR 2025

Across all datasets, there is a strong positive correlation between NDCG@1 and SCORE@1. For
instance, in the AMLB Classification dataset, the correlations between these metrics are particularly
high, with values such as 0.95 between NDCG@1 and SCORE@1. This suggests that these metrics
are closely aligned in assessing the quality of the top-ranked predictions. The implication is that im-
provements in one of these metrics are likely to be reflected in the others, indicating their consistency
in evaluating the effectiveness of ranking at the top position.

Another interesting finding is that TTB@1 shows a strong negative correlation with MRR@1,
particularly in the AMLB datasets where it was evaluated. For example, in AMLB Regression,
the correlation between TTB@ 1 and MRR@1 is -1. This negative correlation indicates that when
MRR@1 improves, TTB@ 1, which focuses more on the time to find the best solution, tends to
decrease. This is expected since MRR tends to position the best result at the top, and optimizing
it may lead to finding it faster in terms of time. RANK@1 exhibits a negative correlation with
NDCG@1, MRR@1, and SCORE@1 across all datasets. In the AMLB Classification dataset, for
instance, RANK @1 correlates negatively with NDCG@1 (-0.67) and MRR@1 (-0.66). This inverse
relationship implies that as the average rank (RANK @ 1) improves (lower rank value), the other
metrics show better performance (higher values), reinforcing the idea that these metrics are effective
in capturing the quality of the ranking, particularly at the top positions.

The correlations exhibit some variation across different datasets. For example, in the OpenML-WEKA
dataset, the correlation between MRR@ 1 and RANK @1 is 0.32, much weaker and with the opposite
sign compared to the AMLB datasets. This variability could suggest that the relationships between
these metrics may be affected by the length of the models evaluated (only 20 in OpenML-WEKA),
but this is speculative.

In general, improvements in ranking-based strategies compared to those that rely on score-based
models are clear. The underperformance of score-based models, although better than random selection,
highlights the advantages of using ranking information. The results suggest that the choice between
ranking-based and score-based variants can significantly influence the consistency and robustness of
performance across tasks for optimal pipeline selection in AutoML problems.

5 RELATED WORK

Pipeline selection is an important problem of AutoML. Significant approaches have been developed
to efficiently navigate the combinatorial space of possible models, preprocessing steps, and hyperpa-
rameters (Hutter et al.| [201 1} |[Feurer et al.| 2015} |Vanschoren, [2019)). In particular, |Vanschoren|2019
categorizes meta-models into performance predictors and ranking generators. We extend this idea by
showing that transitioning from score-based to ranking-based methods in classical approaches like
BO and MCTS could lead to improvements in pipeline selection.

Furthermore, some other approaches have evaluated the possibility of using ranking techniques
to improve the selection of pipelines. For instance, AutoFolio (Lindauer et al.,[2015)) uses several
algorithms based on performance scores to train a model based on portfolio training data, like pairwise
classifiers. While Autofolio proposes some transformations to the target like log (Xu et al.| (2008)))
or z-score normalization (Collautti et al.| (2013)) to improve the selection, none of these consider
the ranking position. Similarly, other works (Sun & Pfahringer, [2013} [Tornede et al. [2020) use
comparisons as a way to learn better models for algorithm selection. However, comparisons are
primarily score-based between performance scores and not between ranking positions.

An interesting aspect is that, in practice, the pipeline selection problem can occur before the system’s
search process. For example, AutoGluon (Erickson et al.|[2020) employs an ensemble strategy to
combine predictions from different types of preselected fixed pipelines. This methodology leverages
the strengths of various models to improve overall performance, albeit within the limitations of the
preselected pipeline space. On the other hand, GramML (Vazquez et al., 2022} adopts a different
strategy by learning to delineate the space while exploring it using MCTS. It also extends the
search approach to preselected hyperparameters within fixed and predefined ranges (Vazquez et al.,
2023). Preselection allows a priori knowledge of the size of the space and the constituent pipelines,
facilitating a more directed and potentially efficient search.

The idea of working with predefined pipeline spaces resemble to the concept of portfolio management
in finance, where a collection of assets is optimized to achieve the best possible return for a given level
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of risk. Thus, approaches like Probabilistic Matrix Factorization (Fusi et al.,|2018) and Oboe (Yang
et al.,|2019), seek to optimize the selection of models and pipelines based on historical performance
data. These systems leverage collaborative filtering techniques to predict the performance of various
models on new datasets, thereby guiding the selection process in a data-driven manner. By building
on the successes and failures of past model applications, portfolio-based approaches aim to streamline
the AutoML workflow and enhance decision-making efficiency.

Another innovative direction in AutoML research involves using ranking information to improve the
cold start problem and meta-learning strategies. Auto-sklearn 2.0 (Feurer et al., [2022)), for example,
uses portfolio information to prioritize models and configurations that are likely to perform well,
based on historical performance on similar tasks. This approach helps to quickly identify promising
starting points for the BO process, reducing the time and resources required for model selection. It
also uses preselected pipelines to address the cold start problem.

Similarly, RankML (Laadan et al.l 2019) explicitly focusing on a meta-learning approach for the pre-
ranking of machine learning pipelines. This methodology aims to leverage accumulated knowledge
to predict the efficacy of different pipelines before detailed evaluations, potentially saving significant
computational resources and accelerating the AutoML process.

MetaTPOT (Laadan et al., [2020) takes this concept to enhances the evolutionary algorithm-based
optimization tool (TPOT, |Olson & Moore|(2016))) by incorporating meta-learning techniques that
use ranking information to guide the search process. By learning from the performance rankings of
pipelines across a variety of datasets, MetaTPOT seeks to improve upon its predecessor by identifying
efficient pipelines more quickly.

The approaches described above recognize the importance of using ranking information, whether to
preselect the system’s components, order them to expedite the search, or as a form of meta-learning
to enhance system efficiency. However, the problem of learning to rank and the importance of using
positional information has not been addressed, to our knowledge, until this work. We believe this
work presents a novel conceptual framework as a basis for learning to rank in AutoML that can
potentially be transferred to many other approaches.

6 CONCLUSIONS AND DISCUSSION

This work presents a simple strategy to frame the pipeline selection task in automated machine
learning (AutoML) as a Learning-to-Rank (LTR) problem. Based on the hypothesis that incorporating
the positional information of pipelines from previous results can improve selection outcomes, this
work compares traditional pipeline selection approaches (score-based) against a ranking-based
counterpart by transforming the prediction objective from a target metric to a ranking position.

The results of the experiments demonstrate a marked improvement of the ranking-based approach
over the score-based approach. The superior performance underscores the importance of considering
the positional information rather than focusing on isolated metric predictions regarding to the ranking
problem. Furthermore, it was found that metrics commonly used in ranking problems correlate
with metrics more typical of AutoML, such as the objective metric and the time taken to find the
best solution. This finding corroborates the hypothesis that ranking optimization strategies are more
aligned with the intrinsic structure of selection problems in AutoML.

However, this study primarily focuses on demonstrating the effectiveness of ranking-based approaches
in scenarios where all pipelines are known, which means that the search space is finite and predefined.
While we believe this scenario addresses a significant portion of the pipeline selection problem, as
predefined pipelines are common in many practical tools, further studies are needed to extend these
findings to more diverse scenarios, including feature selection and hyperparameter optimization.
Additionally, evaluating more complex and computationally expensive LTR algorithms, such as
pairwise methods, was beyond the scope of this work.

Lastly, while the tasks and pre-computed pipelines used for evaluation may not capture the full range
of possibilities in the AutoML landscape, we believe that by leveraging classification and regression
tasks from OpenML and established benchmarks like AMLB and ASLib, the results are generalizable
and can be built upon in future research.
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A OPENML TASKS

This appendix provides additional details on the specific datasets used in our study. OpenML tasks are
separated by scenario into OpenML-Weka tasks, AMLB-Classification tasks and AMLB-Regression
tasks.

A.1 OPENML-WEKA TASKS

The OpenML task IDs for OpenML-Weka 2017 as described in ASLib initiative are:

2097, 2098, 2102, 1701, 1702, 1705, 1710, 1711, 1713, 1714, 1715, 1717, 1719, 1720, 1721, 1722,
1723, 1727, 1728, 1730, 1731, 1735, 1736, 1740, 1742, 1744, 1752, 1757, 1764, 10041, 10045,
10046, 10047, 10050, 10053, 10054, 10055, 10067, 10069, 10070, 10071, 10072, 10074, 10075,
10076, 10077, 10079, 10080, 10082, 10083, 10084, 10085, 10086, 7532, 7535, 7536, 125849,
125850, 125851, 125852, 125853, 125854, 125855, 125857, 125859, 125861, 125865, 125866,
125867, 125868, 125869, 125870, 125871, 125873, 125874, 125875, 125876, 125877, 125878,
125879, 125880, 125881, 125884, 125885, 125886, 125887, 125888, 125889, 125890, 125891,
125892, 125894, 125897, 125898, 125899, 125901, 125902, 125905, 125906, 125909, 125910,
125911, 125913, 125914, 125915

We excluded from the selectable datasets those from the AutoML Benchmark (AMLB) that also
met the criteria, as they are used in the other experiment. The excluded dataset IDs are as follows:
146818, 359955, and 190146.

A.2 AMLB-CLASSIFICATION TASKS

The selected AMLB IDs for classification tasks are:

2073, 3945, 7593, 10090, 146818, 146820, 167120, 168350, 168757, 168784, 168868, 168909,
168910, 168911, 189354, 189355, 189356, 189922, 190137, 190146, 190392, 190410, 190411,
190412, 211979, 211986, 359953, 359954, 359955, 359956, 359957, 359958, 359959, 359960,
359961, 359962, 359963, 359964, 359965, 359966, 359967, 359968, 359969, 359970, 359971,
359972, 359973, 359974, 359975, 359976, 359977, 359979, 359980, 359981, 359982, 359983,
359984, 359985, 359986, 359987, 359988, 359989, 359990, 359991, 359992, 359993, 359994,
360112, 360113, 360114, 360975

A.3 AMLB-REGRESSION TASKS

The selected AMLB IDs for regression tasks are:

167210, 233211, 233212, 233213, 233214, 233215, 317614, 359929, 359930, 359932, 359933,
359934, 359935, 359936, 359937, 359938, 359939, 359940, 359941, 359942, 359943, 359944,
359945, 359946, 359948, 359949, 359950, 359951, 359952, 360932, 360933, 360945

Task 359931 was excluded due to errors.
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B DETAILED EXPERIMENTS RESULTS

In this section we break down the results presented in Section 4] separating them into scenarios
OpenML-Weka, AMLB-Classification and AMLB-Regression problems.

B.1 OPENML-WEKA

Table 3: Comparison of approaches using ranking metrics NDCG and MRR on ASLib tasks. The
best results in each group are highlighted in bold.
var  NDCG@l  NDCG@5  NDCG@10 MRR@1 MRR@5 MRR@10

Random 0.600 (©-27) 0,638 (°16) 0671 (O-13) 0068 (0-25)  .123 (0-27) (146 (0-26)

Score  0.872 (010 0863 (0:08)  g58 (0-07) (9128 (0:33) (301 (0:34) (318 (0-32)

Ave Rank 0879 (°99 0865 (0-0%) 0860 (°-09) 0133 (O30 0304 (O34 0330 (0-32)
Score  0.872 (019 0863 (0:08)  g58 (0-07) (128 (0:33) (301 (0:34) (318 (0-32)

R Rank 0879 (°99 0865 (0:0%) 0860 (°-0%) 0133 (O30 0304 (O34 0330 (0-52)
Score  0.610 (°-26) 0,638 (016) 668 (O-13) 0,076 (027 (.144 (0-29) 0165 (0-28)

Lasso Rank  0.879 (°09 03865 (0-08) g6 (0:00) (133 (0-34) (304 (0:31) 330 (0-32)
) Score  0.872 (0-10) 083 (0:08) (858 (0-07) 128 (0:33) (301 (0-34) 318 (0-32)
R Rank 0879 009 086509 0860 009 (133 (030 0304 O30 (330 (0:32)
Score  0.884 (014 0g78 (0:09) (g8 (0:07) 253 (0:43) (383 (0:40) 403 (0-38)

RE Rank  0.899 (013) 0892 (0:08) (898 (0:06) (5296 (0-46) (426 (0-41) (448 (0-39)
Score  0.846 ('16) 0853 (0-10) (854 (0-07) 01 (0-40) (333 (0:38) 357 (0-37)

GB Rank 0872 (%12 0867 (°:98) (3866 (200  0.156 (°:30) (321 (0:35) (344 (0-39)
Score  0.830 (17 0850 (019 (865 (0:08) 0,177 (0:38) (306 (0-37) 333 (0-35)

LGBM 00 (0.12) "eag (0.07) "coq (0.06) ‘ony (0.41) s (0.38) i (0.36
Rank  0.889 (O 0.888 (©- 0.894 (©- 0.221 ©- 0.383 (©- 0.402 (0-36)

BO Score  0.872 (9100 0863 (0:08) (858 (0-07) 128 (0:33) (301 (0-30) 318 (0-32)

Rank  0.879 (©09) 0865 (°:98) (g6 (0:06) (133 (0:34) (304 (039 (330 (0:32)

Table 4: Comparison of approaches using AutoML metrics average SCORE and average RANK on
ASLIb tasks. The best results in each group are highlighted in bold.
var  SCORE@l  SCORE@5 SCORE@I0  RANK@I RANK@5  RANK@I10

Random 0.765 (©23)  0.856 (°17) 0866 (°-17) - - -
Score  0.854 (018 0869 (017 873 (0-17) 141 (0-20) 10 (0-08) 1107 (0-3D)

Ave Rank 0856 (018 0869 (0-17) (874 (0-17) 114 (0:12) g0 (0:04) 5 (0-16)
Score 0854 (°18) 0869 (°17) 0873 (017 1041 (0-200 1 gpg (°-08) 109 (03D

LR Rank  0.856 (°18) 0869 (017) 0874 (0-17) 1014 (012) o2 (004 127 (0-16)
Score 0767 (20 0,854 (0-18) 0865 (0-17) 1784 (04D 637 (0-48) 574 (0-50)

Lasso Rank 0856 (O18) 0869 (0-17) (874 (0-17) 1 146(0:35) 1137 (0:34) {103 (0-30)
. Score  0.854 (018) 0869 (0-17) (873 (0-17) 141 (0-20) 106 (0-08) 1109 (0-31)
Ridge Rank 03856 (©18) 0869 (017 874 (01T [014(012) g (0:04) | gp7 (0.16)
Score  0.857 (©17) 0870 (017 874 (0-1T) 1249 (0:43) 1150 (0:36) 110 (0:3D)

RE Rank  0.855(*1®) 0873 (017 0874 (0-17) 1174 (0-38) 169 (0-25) 054 (0-25)
Score  0.852 (018 0869 (017 g72 (0-1T) 1272 (0:45) g9 (0-28) 117 (0:32)

oB Rank  0.853 (18 0871 (017 0874 (0-17) 1240 (0-43) 1043 (0-20) 034 (0-18)
Score  0.850 (*18) 0870 (017 874 (017) 1416 (049 1237 (0:43) 9371 (0:34)

FOBME Rank 0855 019 0873011 (g75 (017 1214040 081 (027 gy (020
BO Score  0.854 (018) 0869 (0-17) (873 (0-17) 1039 (0-19) 1 (0-08) 109 (0-31)

Rank  0.856 (°18) 0869 (O17) 0874 (0-17) 1016 (O-13) 1002 (0049 1026 (0-16)

15



Under review as a conference paper at ICLR 2025

Table 5: Improvement Percentage: Rank-based over Score-based approaches

Avg LR Lasso Ridge RF GB LGBM BO
NDCG@1 0.008 0.008 0.269 0.008 0.016 0.025 0.059 0.007
NDCG@5 0.002 0.002 0.227 0.002 0.013 0.014 0.038 0.002
NDCG@10 0.003 0.003 0.192 0.003 0.017 0.011 0.030 0.002
MRR@1 0.006 0.006 0.057 0.006 0.043  -0.045 0.044 0.006
MRR@5 0.003 0.003 0.160 0.003 0.044  -0.012 0.076 0.003
MRR@10 0.012 0.012 0.166 0.012 0.045  -0.008 0.069 0.012
SCORE@]1 0.002 0.002 0.089 0.002  -0.002 0.001 0.005 0.002

SCORE@5 0.000 0.000 0.015 0.000 0.003 0.001 0.003 0.000
SCORE@10 0.001 0.001 0.008 0.001 0.000 0.001 0.001 0.001
RANK@1 -0.027  -0.027  -0.638  -0.027  -0.074  -0.032 -0202  -0.023
RANK@5 -0.004  -0.004  -0.495  -0.004  -0.081  -0.046 -0.156  -0.004
RANK@10 -0.082  -0.082  -0.421  -0.082  -0.056  -0.083 -0.070  -0.083

Table 6: Results of the Wilcoxon signed rank test comparing the rankings induced by the ranked-
based vs scored-based strategies. The statistically significant differences (p_value < 0.05) in each
group are highlighted in blue.

Avg LR  Lasso  Ridge RF GB LGBM BO

NDCG@1 0.000  0.000  0.000  0.000 0.000 0.000 0.000  0.000
NDCG@5 0.000  0.000  0.000  0.000 0.000 0.000 0.000  0.000
NDCG@10 0.000  0.000  0.000  0.000 0.000  0.000 0.000  0.000
MRR@1 0.042 0.042 0.000 0.042 0.000 1.000 0.001  0.042
MRR@5 0.083 0.114  0.000 0.083  0.000 0.945 0.000  0.083
MRR@10 0.000  0.000  0.000  0.000 0.000 0267 0.000  0.000
SCORE@1 0.000  0.000  0.000  0.000 0.000 0.004 0.000  0.000
SCORE@5 0.046  0.046  0.000  0.046  0.000  0.000 0.000  0.046
SCORE@10 ~ 0.000 0.000 0.000 0.000 0.000 0.000 0.000  0.000
RANK@1 0.000  0.000  0.000  0.000 0.000 0.071 0.000  0.001
RANK@5 0.079  0.079  0.000 0.079  0.000  0.000 0.000  0.079
RANK@10 0.000  0.000  0.000  0.000 0.000  0.000 0.000  0.000

B.2 AMLB-CLASSIFICATION

Table 7: Comparison of approaches using ranking metrics NDCG and MRR on AMLB clasification
tasks. The best results in each group are highlighted in bold.

var NDCG@! NDCG@10 NDCG@100 MRR@1 MRR@10  MRR@100

Random 0679 (°-28) 0669 (14 0,686 (012 0,003 (-0 0,009 (09 0,013 (0D
Score  0.850 (°-16) 0859 (0-13)  g72(0:09) (o1 (004 (028 (009 (35 (009

Avg Rank 0884 (©12) g9 (0:10)  (g7g (0.08) (3 (0:15) 040 (0-16) (49 (016)
Score  0.850 (°16) 0860 (°-13) 0872 (0:09) 001 (004 (028 (009 35 (009

LR Rank  0.885 (°:12) 0890 (°-10)  g78 (0:08) (23 (0-15) (041 (O17) (49 (0-16)
Score 0653 (023 0662 (014 0684 (120 0003 (°95) 0,009 (OO 0013 (0-07)

Lasso Rank 0884 (°12) (g9 (0:10)  (g7g (0.08) (3 (0:15) 39 (0:16)  (yg (016)
) Score  0.850 (°16) 0860 (°-13) 0872 (0:09 001 (000 (028 (009 35 (009
Ridge Rank 0885 (©12) (0890 (0100  (g78 (0-08) (3 (0:15) g (0-17) (49 (0-16)
Score  0.846 (018) 0845 (0-14)  ga7 (0-11) (044 (0200 (067 (022) (75 (0-22)

RE Rank  0.878 (°14) 0876 (°-11) 0870 (0-09 0030 (*17) (047 (O18) (056 (018
Score  0.870 (014 0872 (0-11)  g72 (0:09) 23 (0:15) (044 (0-16) 51 (0-16)

op Rank 0893 (°12) 0894 (0-09 0878 (°:0T) 0023 (©15) 0,041 (> 0050 (O-17)
Score  0.868 (°1%) 0870 (°-11) 0867 (0-09 0015012 038 (015 (45 (0-15)

LGBM Rank  0.888 (°:12) 0885 (0:09)  g74 (0-08)  (p1 (0-14) (39 (0-16) g7 (0-16)
Score  0.850 (°16) 0860 (°-13) 0872 (0-09 001 (000 (028 (009 35 (009

BO Rank  0.884 (°-12) 0890 (0-10)  g78 (0-08)  (p3(0:15) (041 (O-17) 49 (0-16)
MCTS Score  0.864 (015 0855 (0:13) 837 (0:10) 030 (O-17) (052 (0-18) 61 (O-18)

Rank  0.876 (13 0852 (0-10) g4 (0-08) (571 (0:22) (059 (0-22) g (0-22)
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Table 8: Comparison of approaches using AutoML metrics average SCORE and average RANK on
AMLB classification tasks. The best results in each group are highlighted in bold.
var  SCORE@] SCORE@I0 SCORE@100  RANK@I RANK@I0 RANK@I00

Random 0.558 (0-22) 723 (0-18) 0.777 (17 - - -

Score  0.675 (0200 723 (0-19) 0.767 (©17) 1500 (0-50) 1238 (0:43) 1172 (0:38)

Ave Rank 0701 018 0720 (018) (772 (017) 1366 (0-48) 399 (0:49)  { j75(0:38)
Score  0.675 (°-20) 0723 (0190 0767 (0-17) 1504 (0-50) 1238 (0-43) 470 (0-38)

LR Rank  0.702 (°-18) 720 (0-18) 0.772 017 1361 (048) 1392 (0:49) 168 (0:37)
L Score  0.545(0-22) 0724 (018 0776 (0-17) 1813 (0-39) 1469 (0-50) 510 (0-50)
350 Rank 0701 ©18) 0720 (018) (770 (017) | [56(0:36) | 473(0:50) | 335 (0.47)

) Score  0.675 (0200 723 (0-19) 0.767 (017 1504 (0-50) 1238 (0:43) 170 (0-38)
R Rk 070218 0720018 0772041 361 (049 139 (049 | 65 (0:37)
Score  0.674 (019 739 (0-17) 0.779 (017 1485 (0:50) 1361 (0-48) 306 (0-46)

RE Rank  0.688 (°19) 737 (0-18) 0.781 (017 1427 (0:49) 1437 (0:50) 197 (0:44)
Score  0.684 (0-20) (734 (0-18) 0.768 (017 1459 (0:50) 128 (0:45) 4 193 (0:39)

GB Rank 0702 (1) 731 (0-18) 0.772 (017 1375 (0:48) 1377 (0:48) 4 199 (0-40)
Score  0.688 (019 735 (0-18) 0.770 (017 1423 (0:49) 1327 (0:47) 1995 (0:42)

LGBM Rank 0697 (018 (734 (0-18) 0.773 (017 1420 (0-49) 1377 (0:48) 1 90g (0-41)
Score 06759200 0723 (019 0767 (1) 1503 (0500 238 (0-45) g7 (0-38)

BO Rank  0.701 (18 0720 (0-18) 0.772 (017 1358 (0-48) 1392 (0-49) 168 (0-37)
Mers  Seore  0.686 (0190725 (1) 0,774 (0111306 (04601454 (0907 286 (04%)

Rank  0.698 (°-18) 733 (0-18) 0.773 (017 1325 (0:47) 1368 (0-48) 1341 (0-47)

Table 9: Comparison of approaches using average TTB on AMLB classification tasks. The best
results in each group are highlighted in bold.

var TTB@1 TTB@10 TTB@100

Random 5041.482 (3583-41) 4908 858 (3639:28)  40g] 935 (3736.80)
Av Score  5043.765 (3380-72) 4448 601 (3677:92) 303386 (352523)
£ Rank  4874.958 (3624.69) 4367 415 (3660.09)  7go¢ jog (3514.38)
LR Score  5043.765 (3580-72) 4437 304 (3679.17)  3()33 337 (3524.90)
Rank  4874.908 (3624.76) 4357 566 (3662.46) 599y 397 (3515.49)

Lasso Score  5032.579 (3583:86) 4876417 (3636-97) 4303 129 (3747.74)
N Rank 4874958 (3624.69) 4367 433 (3660.07) 9995 gg1 (3514.42)
Ridee Score  5043.765 (3580-72) 4437394 (3679.17) 3033 337 (3524.90)
£ Rank 4874908 (3624.76) 4357 566 (3662.46) g4 39) (3515.49)
RE Score  4787.428 (3668:17) 4949 099 (3724-16) 9849 469 (8502.55)
Rank 4934319 (3615:37) 4578 9gp (3718.60) 9939 404 (3455.19)

GB Score  4927.551 (3616:19) 4347 57 (3679.70) 3061 6 (3518.02)
Rank 4873.310 (3623.17) 4367.823 (3672.12) 2988.906 (3558.88)

LGBM  Score  4947.902 (3602.84) 4509 409 (3674.22) 338 gng (3504.85)
Rank  4878.782 (3613:86) 4360 608 (3668.37) 3075 30 (3562.53)

BO Score  5043.765 (3580-72)  4437.394 (3679-17) 3033 415 (3524.88)
Rank  4874.908 (3624.76) 435 566 (3662-46) 2994 357 (3515.50)

MCTS Score  4812.553 (3628:41) 4318461 (3735:58) 2965 364 (3726-11)

o
o
©

Rank  4631.098 (3651:16) 4330 997 (3729:38)  31¢5 93 (3672
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Table 10: Improvement Percentage: Rank-based over Score-based approaches

Avg LR Lasso Ridge RF GB LGBM BO  MCTS
NDCG@1 0.040 0.041 0.353 0.041 0.038 0.027 0.023 0.041 0.014
NDCG@10 0.036 0.036 0.344 0.036 0.037 0.025 0.017 0.036 -0.003
NDCG@100 0.007 0.007 0.284 0.007 0.027 0.007 0.008 0.007 -0.016
MRR@1 15.000  15.000 7.000  15.000 -0.323 0.000 0.364  15.000 0.714
MRR@10 0.430 0.457 3.446 0457  -0297  -0.061 0.032 0.457 0.145
MRR@100 0.374 0.398 2.641 0398  -0.260  -0.027 0.036 0.398 0.110
SCORE@1 0.039 0.040 0.287 0.040 0.021 0.026 0.013 0.040 0.017

SCORE@10 -0.005 -0.004  -0.007 -0.004  -0.003  -0.004 -0.002 -0.005 0.011
SCORE@100 0.007 0.007  -0.005 0.007 0.003 0.006 0.004 0.007 -0.001

TTB@1 -0.033 -0.033  -0.031 -0.033 0.031 -0.011 -0.014 -0.033 -0.038
TTB@10 -0.019 -0.019  -0.105 -0.019 0.078 0.005 -0.031 -0.019 0.027
TTB@100 -0.036 -0.036  -0.304 -0.036 0.032  -0.024 -0.020 -0.036 0.067
RANK@] -0.089 -0.096  -0.362 -0.096  -0.039  -0.058 -0.002 -0.097 0.015
RANK@10 0.130 0.124 0.003 0.124 0.056 0.075 0.038 0.124  -0.059

RANK@100 0.000 -0.002  -0.118 -0.002  -0.026 0.005 -0.014 -0.002 0.043

Table 11: Results of the Wilcoxon signed rank test comparing the rankings induced by the ranked-
based vs scored-based strategies. The statistically significant differences (p_value < 0.05) in each
group are highlighted in blue.

Avg LR  Lasso Ridge RF GB LGBM BO  MCTS
NDCG@1 0.000  0.000  0.000  0.000 0.001  0.001 0.008  0.000 0.137
NDCG@10 0.000  0.000  0.000  0.000 0.000 0.000 0.000  0.000 0.992
NDCG@100 0.004  0.003  0.000 0.003 0.000 0.002 0.000  0.003 1.000
MRR@1 0.000 0.000 0.000 0.000 0.926 0.500 0.197 ~ 0.000 0.004
MRR@10 0.108  0.081 0.000 0.081 0981 0.618 0.411  0.081 0.356
MRR@100 0.006 0.005 0.000 0.005 0943 0462 0.252  0.005 0.995
SCORE@1 0.000  0.000  0.000  0.000 0.007 0.002 0.107 ~ 0.000 0.359
SCORE@10 1.000  1.000  0.843 1.000  0.999  1.000 0.930  1.000 0.000
SCORE@100 0.001  0.001 0.144 0.001  0.022 0.012 0.018  0.001 0.578
TTB@1 0.000  0.000  0.000 0.000 0.990 0.258 0.081  0.000 0.000
TTB@10 0945 0933  0.000 0.933 1.000  0.974 0.338  0.933 0.978
TTB@100 0.000  0.000  0.000  0.000 0.971 0.001 0.006  0.000 0.863

AVG_RANK@1 0.000  0.000  0.000 0.000  0.053  0.007 0.467  0.000 0.746
AVG_RANK@10 1.000  1.000  0.546 1.000  0.988  0.999 0.946  1.000 0.006
AVG_RANK@100  0.500  0.449  0.000 0.449  0.118 0595 0.247  0.449 0.968
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B.3 AMLB-REGRESSION

Table 12: Comparison of approaches using ranking metrics NDCG and MRR on AMLB regression
tasks. The best results in each group are highlighted in bold.

var NDCG@! NDCG@10 NDCG@100 MRR@| MRR@10  MRR@100
Random 0.711 (0200 07150120 (736 (0-11) 0 00p (00 0,010 (°-08) 0,016 (°-06)
Score  0.778 (9-23) 0789 (°:16) (817 (0-10) 039 (0-19) (2 (0-20) ey (0-20)

Ave Rank 0846 (19 0855(0:15) (868 (0-11) 0073 (0-26) (113 (0:28) (123 (0-28)
Score 0723 (021 0715(°13) 736 (0-11) 0012 (1D 016 (O-11) 0,022 (01D

LR Rank 0845 (0200 0g55(0:15) (869 (0-11) 0079 (0-27) (116 (0:29) 0,125 (0-28)
Score  0.721 (°-22) 0714 (°13) 736 (O-11) 0012 (1D (016 (01D 0022 (1D

Lasso Rank  0.846 (0190 855 (0:15)  geo (011) 73 (0:26) (113 (0:28) 193 (0:28)
) Score  0.721(°22) 0714 (0-13) 0736 (011 0012 (O 016 (1) 22 (01D
Ridge Rank  0.845 (0200 (55 (0:15)  geo (011) 79 (0:27) (116 (0:29) 195 (0-28)
Score 0702 (22 0711 (018 0737 (2D 0,000 (009 0,009 (0-95) 0,014 (009

RE Rank 0858 (017 0858 (015 (863 (0-13) 0,030 (17 (062 (°-19) 0,075 (019
Score  0.693 (°-23) 0708 (°-13) 0734 (O-11) 0,003 (0-05) (008 (©-00) (014 (0-06)

GB Rank  0.835(°29) 0847 (0-16) g8 (011 067 (0-25) (093 (0-26) 105 (0-26)
Score  0.613 (0260 0663 (°-18) 0724 (0-12) 0,000 (O 0,006 (*03) 0012 (°-03)

LGBM Rank  0.828 (290 0839 (0-16)  g59 (0:12)  (055(0:23) (76 (024 (89 (0-23)
Score  0.796 (°-21)  0.804 (°-14) 0816 (010 0,027 (016) 062 (*19) (070 (19

BO Rank  0.846 (19 0855 (015 g9 (O-11) 079 (0-27) (116 (0-29) (125 (0-28)
Score  0.733(0:23) 732 (0:19) 754 (0-14) 052 (0:22) (66 (022) 072 (022

MCTS Rank  0.878 (°17) 0845 (0-11)  g51 (0:09)  (0g5(0:28)  (085(0-28) (91 (0-28)

Table 13: Comparison of approaches using AutoML metrics average SCORE and average RANK on
AMLB regression tasks. The best results in each group are highlighted in bold.

var SCORE@1 SCORE@10 SCORE@100 RANK@1 RANK@10  RANK@100
Random 1900422 (3:02e+23) 5 13106 (1.06e+07) | g4e406 (9-89e+06) - - -
A Score  -2.28e+06 (1:07e+07) 5 gle406 (1-01e+07) | gpetpp (9-70e+06) | 418 (0:49) 403 (0-49) | 358 (0.48)
ve Rank  -2.10e+06 (1-07¢+07) _j g1e406 (9:70e+06) | gjetg6 (9-70e+06) 1387 (0:49) 355 (0.48) |64 (0-44)
IR Score  -1.26e+14 (2:27e+15) 5 1ge406 (1-10e+07) | 950406 (9-95e+06) 735 (0.45) 630 (0.48) | 464 (0-50)
Rank  -2.08e+06 (1:06e+07) _j gje406 (9:70e+06)  gjeig6 (9-70e+06) 967 (0-44) 357 (0.47) | 339 (0.47)

Score  -1.26e+14 (2:27eH15) 5 1ge406 (1-10e+07) | 95106 (9-94e+06) 1751 (0.45) 677 (0-48) | 464 (0.50)

Lasso Rank 2106406 (1:07¢+07) | 91e406 (9:70e+06) | geigp (9:706+06) 967 (0:44) 1357 (0:47) 339 (0.47)
Rid Score  -1.26e+14 (2:27e+15) 5 1ge406 (1:10e+07) | 95106 (9-94e+06) 1771 (0.45) 633 (0.48) | 467 (0.50)
e Rank  -2.08e+06 (1:06e+07) 191406 (9-T0eF06) | gjetp (9-70eH+06) 1967 (0-44) 324 (0-47) 339 (0.47)
RF Score  -2.19e+37 (3:97e+38) 5 j1e406 (1-06e+07) | ggei06 (9-92e+06) 787 (0.41) 506 (0-50) | 494 (0.49)
Rank  -2.34e+06 (117e407) 23406 (1-14eF07)  _jggetp (1-01e+0T) 1915 (0-41) 467 (0-50) 1379 (0-49)

B Score  -3.90e+58 (2:21e459) 136406 (1-07e+07) | g5e406 (9-91e+06) 745 (0.44) | 633 (0.48) | 591 (0-50)
Rank  -2.09e+06 (1-06e+07) _j 97¢106 (1.00e+07) _j gjepg6 (9:72¢+06) | 24 (0.43) 309 (0.46) 579 (0.45)

Score  -6.71e+57 (4:93e+58) | 400434 (1.33e+35) | 936106 (9-82¢406) 1 g33(0.37) | 655(0-48) | 439 (0.50)

LGBM Rank  -5.53e+06 (6-37¢F07)  _j 98e406 (1:01e+07) | goetg6 (9-78e+06) | 164 (0-37) 309 (0-46) | 306 (0-46)
B0 Score  -2.39e+06 (1-17e+07) 5 g1e406 (1-01e+07) | gjeig6 (9-74e+06) | 545 (0.50) 436 (0-50) | 367(0.48)
Rank  -2.08e+06 (1-06e+07)  _j g1e406 (9:70e+06)  gjeige (9-70e+06) 1379 (0:48) 367 (0.48) |73 (0.45)

MCTS Score  -2.31e+06 (1:08e+07) 5 136406 (1-01e+07) | goeyqp (9:70e+06) 1 639 (0.48) | 597 (0.49) | 379 (0-49)
Rank  -1.92e+06 (9-70¢+06) _jgjei06 (9:70e+06)  _j gjepgp (9:70e+06) | 330 (0.47) 1348 (0.48) 309 (0.46)
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Table 14: Comparison of approaches using average TTB on AMLB regression tasks. The best results
in each group are highlighted in bold.

var TTB@1 TTB@10 TTB@100
Random 3586.084 (1832:81) 3453 575 (1911.90)  77¢] 7g7 (2145.84)
Av Score  3424.625 (1951:65) 9903705 (2142.14) 11 ppp (1812.69)
£ Rank  3290.290 (2042:10)  270g 933 (2060.88) 1859 g5 (1852.73)
LR Score 3545273 (1864.66) 3455948 (1928.41) 747 393 (2190.03)
Rank 3255857 (2045:68) 2600 243 (2056.09) 1859 944 (1852.76)

Lasso Score 3545273 (1864.66) 3455916 (1928.47) 3779 g6 (2181.15)
B Rank 3290291 (2042.10)  570g 788 (2061.04) 1859 477 (1852.95)
Ridee Score  3545.073 (1864.66) 3455 g1¢ (1928.47) 5937 503 (2177.95)
£ Rank  3255.857 (2045.68) 690 243 (2056.09)  1g50 944 (1852.76)
RF Score  3586.084 (1832:81) 3458 919 (1897.20)  7g43 1g¢ (2124.43)
Rank 3477.630 (1924.12) 3024.837 (2140.76) 1941372 (2036.63)

GB Score  3572.849 (1842:57) 3485 569 (1903.98) 7798 g7 (2151.61)
Rank  3317.121 (2027:53) 9849 755 (2131.73) 1734 ¢79 (1866.51)

LGBM Score 3586.084 (1832.81) 3416.294 (1896.80) 2541.332 (2095.30)
Rank  3371.637 (1979:92) 9471 128 (2091.28) 1757 |3¢ (1800.78)

BO Score  3477.129 (1919.76)  5gg¢ 739 (2124.44) 575904 (1870.60)
Rank 3255857 (2015:68) 2690243 (2056-08) 159 945 (1852.76)

MCTS Score  3378.009 (1983-92) 3145405 (2127.41) 9379 453 (2258.28)

o
]

Rank  3148.875 (1956 3137.958 (1963:27) 9549 7] (2148.62)

Table 15: Improvement Percentage: Rank-based over Score-based approaches

Avg LR Lasso Ridge RF GB LGBM BO MCTS
NDCG@1 0.088 0.169 0.173 0.173 0.221 0.204 0.351 0.063 0.198
NDCG@10 0.083 0.196 0.198 0.198 0.207 0.195 0.266 0.064 0.154
NDCG@100 0.063 0.180 0.180 0.180 0.171 0.183 0.186 0.065 0.129
MRR@1 0.846 5.500 5.000 5.500 21.000 1.889 0.647
MRR@10 0.826 6.433 6.107 6.282 6.233 10.791 12.154 0.862 0.292
MRR@100 0.791 4.689 4.466 4.592 4310 6.432 6.370 0.785 0.258
SCORE@1 -8.08¢-02  -1.00e+00  -1.00e+00  -1.00e+00  -1.00e+00  -1.00e+00  -1.00e+00  -1.28e-01  -1.70e-01

SCORE@10 -4.60e-02 -1.27e-01 -1.27e-01 -1.27e-01 5.83e-02 -7.56e-02  -1.00e+00  -4.69¢-02  -1.01e-01
SCORE@100 2.48e-03 -2.13e-02 -1.98e-02 -1.98e-02 2.00e-02 -1.81e-02 -4.64e-03  -6.35e-04  -3.94e-03

TTB@1 -0.039 -0.082 -0.072 -0.082 -0.030 -0.072 -0.060 -0.064 -0.068
TTB@10 -0.067 -0.222 -0.216 -0.222 -0.125 -0.182 -0.139 -0.099 -0.002
TTB@100 -0.119 -0.323 -0.319 -0.321 -0.317 -0.381 -0.309 -0.145 0.099
RANK@1 -0.026 -0.264 -0.264 -0.264 -0.318 -0.287 -0.365 -0.112 -0.189
RANK@10 -0.037 -0.190 -0.184 -0.189 -0.026 -0.199 -0.209 -0.049 -0.156
RANK @100 -0.069 -0.085 -0.085 -0.087 -0.032 -0.159 -0.093 -0.069 -0.051

Table 16: Results of the Wilcoxon signed rank test comparing the rankings induced by the ranked-
based vs scored-based strategies. The statistically significant differences (p_value < 0.05) in each
group are highlighted in blue.

Avg LR  Lasso  Ridge RF GB LGBM BO  MCTS
NDCG@1 0.001  0.000 0.000  0.000 0.000 0.000 0.000  0.000 0.000
NDCG@10 0.000  0.000  0.000  0.000 0.000 0.000 0.000  0.000 0.000
NDCG@100 0.000  0.000  0.000  0.000  0.000  0.000 0.000  0.000 0.000
MRR@1 0.004  0.000  0.000  0.000 0.001  0.000 0.000  0.000 0.039
MRR@10 0.000  0.000  0.000  0.000 0.000 0.000 0.000  0.000 0.304
MRR @100 0.000  0.000  0.000  0.000 0.000 0.000 0.000  0.002 0.517
SCORE@1 0.000  0.000  0.000  0.000 0.000  0.000 0.000  0.000 0.000
SCORE®@10 0.000  0.000  0.000  0.000 0.899  0.000 0.000  0.012 0.000
SCORE@100 0.813 ~ 0.004  0.005 0.004  0.686  0.000 0.003  0.697 0.001
TTB@1 0.250 ~ 0.000  0.000  0.000 0.006  0.000 0.000  0.011 0.000
TTB@10 0.000  0.000  0.000  0.000 0.000  0.000 0.000  0.000 0.000
TTB@100 0.000  0.000  0.000  0.000 0.000  0.000 0.000  0.000 0.072
AVG_RANK@1 0.230  0.000  0.000  0.000 0.000  0.000 0.000  0.001 0.000

AVG_RANK@10 0.141 0.000  0.000 0.000  0.234  0.000 0.000  0.079 0.000
AVG_RANK@100 ~ 0.015 0.006 0.006 0.005 0.178  0.000 0.003  0.016 0.063
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B.4 CORRELATION BETWEEN METRICS
Tables [17} [T8] and [T9] show all Spearman correlations between all the metrics calculated for each

dataset, respectively.

Table 17: Correlation between metrics in OpenML-Weka dataset.
Ne@l N@s N@l10 M@l Me@s M@10 S@1 S@5 S@10 R@1 R@5 R@10

N@l -0.41 -0.27

N@s5 -0.27 -0.25

N@10 0.01 0.05 -0.39
M@l 0.32 0.29 -0.13
Me@5 0.28 0.21 -0.21
M@10 0.30 0.23 -0.20
s@l -0.43

s@5s 0.25 -0.22
S@10 -0.28

R@1 -0.41 -0.27 0.01 0.32 0.28 0.30 0.30

R@5 -0.27 -0.25 0.05 0.29 0.21 0.23 -0.43 0.25

R@I0 [ 056 10650 039 013 021  -020 | 061 022

Table 18: Correlation between metrics in AMLB Classification dataset.
Nel N@10 N@100 M@l M@10 M@100 S@l1 S@10 S@100 T@1 T@10 T@100 R@1 R@10 R@100

Nel 0.40 0.42 0.42 -0.20 -0.05 -0.51 -0.36 -0.41
N@10 0.17 0.25 0.25 -0.37 -0.26 -0.27 -0.22

N@100 0.03 0.13 0.13 -0.39 -0.17 -0.31

Mel
M@10
M@100
sel
s@10
S@100
T@l
T@10
T@100
R@l
R@10
R@100

Table 19: Correlation between metrics in AMLB Regression dataset.
Nel Nelo N@100 M@l M@10 M@100 s@1 S@10 S@100 T@l T@10 T@100 R@1 R@10 R@100

Nel 0.48
Ne@l1o
N@100
M@l
M@10
M@100
S@1
se@10
S@100
T@1
T@10
T@100
R@1
R@10
R@100

B.5 BONFERRONI CORRECTION

Table[20] describes the experimental results using the Bonferroni correction for each metric, consider-
ing the number of independent tests as the product of the number of seeds, the number of tasks, and
the number of models evaluated for the metric. The column "p-value" contains the p-value obtained
after performing the Wilcoxon signed-rank test between the score-based and rank-based versions.
The column "aponferroni'”” coOntains the corrected value (i.e., /# independent tests, with o = 0.05).
Finally, the column "<" indicates whether the p-value is less than apenferroni, meaning that the null
hypothesis—that the metric value obtained by the rank-based version is less than or equal to that of
the score-based version—is rejected.
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Table 20: Results of the statistical significance tests for each metric after Bonferroni correction

#independent tests (seeds * tasks * models) p-value QBonferroni diff <0
NDCG@1 17760 0.00e+0 2.82e-6  -2.82e-6 yes
NDCG@5 8400  7.56e-239 5.95e-6  -5.95e-6 yes
NDCG@10 17760 0.00e+0 2.82e-6  -2.82e-6 yes
NDCG @100 9360 0.00e+0 5.34e-6  -5.34e-6 yes
MRR@1 17760 5.26e-30 2.82e-6  -2.82e-6 yes
MRR@5 8400 1.21e-43 5.95e-6  -5.95e-6 yes
MRR@ 10 17760  6.84e-117 2.82e-6  -2.82e-6 yes
MRR @100 9360 2.72e-62 5.34e-6  -5.34e-6 yes
SCORE@1 17760 1.83e-195 2.82e-6  -2.82e-6 yes
SCORE@5 8400  3.22e-100 5.95e-6  -5.95e-6 yes
SCORE@10 17760 6.10e-11 2.82e-6  -2.82e-6 yes
SCORE@100 9360 1.10e-13 5.34e-6  -5.34e-6 yes
TTB@1 9360 2.47e-28 5.34e-6  -5.34e-6 yes
TTB@10 9360 2.54e-23 5.34e-6  -5.34e-6 yes
TTB@100 9360 2.35e-78 5.34e-6  -5.34e-6 yes
AVG_RANK@1 17760  2.34e-259 2.82e-6  -2.82e-6 yes
AVG_RANK @5 8400  3.13e-100 5.95e-6  -5.95e-6 yes
AVG_RANK@10 17760 3.14e-59 2.82e-6  -2.82e-6 yes
AVG_RANK @100 9360 7.23e-25 5.34e-6  -5.34e-6 yes

C PIPELINE SEARCH SPACE

We describe the search space for machine learning pipelines as a grammar, with non-terminal symbols
in ALL CAPS and terminal symbols in CamelCase. This encompasses the various components
that can be assembled to preprocess data, select features, and construct models for classification
or regression tasks. The structure of the pipeline is modular, allowing for different preprocessing
techniques for categorical and numerical data, various feature selection methods, and a wide range of
classifiers and regressors. A simplified grammar is described below.
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PIPELINE := DATA_PREPROCESS & FEATURE_SELECTOR & (CLASSIFIER | REGRESSOR)
DATA_PREPROCESS := CATEGORICAL | NUMERICAL | (CATEGORICAL & NUMERICAL)
CATEGORICAL := (Categoricallmputation & ENCODING) | ENCODING
ENCODING := NoEncoding | OneHotEncoder
NUMERICAL := (Numericallmputation & SCALING) | SCALING

SCALING := NoRescaling | StandardScaler | MinMaxScaler |
Normalizer | QuantileTransformer | RobustScaler

FEATURE_SELECTOR := NoPreprocessing | Densifier | ExtraTreesPreprocessor
FastICA | FeatureAgglomeration | KernelPCA |
RandomKitchenSinks | LibLinear | Nystroem |
PCA | PolynomialFeatures | RandomTreesEmbedding |
SelectPercentile | SelectClassificationRates | TruncatedSVD

CLASSIFIER := AdaboostClassifier | BernoulliNBClassifier |
DecisionTreeClassifier | ExtraTreesClassifier |
GaussianNBClassifier | GradientBoostingClassifier |
KNearestNeighborsClassifier | LDAClassifier |
LibLinear_SVCClassifier | LibSVM_SVCClassifier |
MultinomialNBClassifier | Passive AggressiveClassifier |
QDAClassifier | RandomForestClassifier | SGDClassifier | MLPClassifier

REGRESSOR := AdaboostRegressor | ARDRegressor |
DecisionTreeRegressor | ExtraTreesRegressor |
GaussianProcessRegressor | GradientBoostingRegressor |
KNearestNeighborsRegressor | LibSVM_SVRegressor |
MLPRegressor | RandomForestRegressor | SGDRegressor
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